Keysight Technologies

M9420A VXT PXIe Vector Transceiver

60 MHz to 3.8, or 6 GHz

Data Sheet

Table of Contents

Overview	3
Technical specifications	4
Vector signal analyzer performance	5
Vector signal generator performance	11
General specifications	15
Front panel	15
System requirements	16
Application specifications	16
N9071A GSM/EDGE/Evo measurement application key specifications	16
GSM/EDGE/Evo source key specifications	17
N9073A W-CDMA/HSPA+ measurement application key specifications	17
W-CDMA/HSPA+ source key specifications	18
N9072A cdma2000® measurement application and N9076A 1xEV-DO	
measurement application key specifications	21
cdma2000 and 1xEV-DO source key specifications	21
N9080B LTE/LTE-Advanced FDD & N9082B LTE/LTE-Advanced TDD	
measurement application key specifications	21
LTE source key specifications	22
N9081A Bluetooth® measurement application key specifications	22
Bluetooth source key specifications	22
N9079A TD-SCDMA measurement application key specifications	23
TD-SCDMA source key specifications	23
N9077A WLAN measurement application key specifications	23
WLAN source key specifications	25
Software	26
Related literature	27
Web	27

Overview

Compress time, compress test

The best solution for a specific problem is a focused tool you simply fine-tune. Keysight's M9420A PXIe vector transceiver (VXT) is purpose-built for rapid solution creation and faster throughput in manufacturing test of wireless components and Internet-of-Things (IoT) devices. With FPGA-accelerated measurements and deep software, the ready-to-run VXT lets you start closer to your finish line.

Product description

The M9420A VXT is a four-slot PXIe vector signal generator and analyzer, ranging from 60 MHz to 3.8 or 6 GHz with modulation and analysis bandwidth up to 160 MHz. Up to four VXT's can be configured in a single 18-slot PXI chassis, with only a single M9300A frequency reference required. Alternatively, a versatile single-chassis custom solution can be created from Keysight's modular portfolio, dramatically reducing test footprint.

Applications

- Power amplifier and front-end-module design validation and manufacturing
- Radio transceiver design validation and production test
- Development, design validation, and manufacturing test for radios and other IoT connected devices

Reference solutions

Application-specific reference solutions, a combination of recommended hardware, software, and measurement expertise, provide the essential components of a test system. The following reference solutions include the M9420A PXIe VXT vector transceiver as a hardware component:

 RF power amplifier/front end module characterization and test, Reference Solution for the industry's fastest power amplifier test solution including rapid waveform download, tight synchronization, automated calibration, and FPGA-accelerated power servo and fast power measurements. For more information, see www.keysight.com/find/solution-padvt

M9420A VXT PXIe vector transceiver placed inside the M9018A PXIe chassis

Technical Specifications

Definitions and conditions

Specifications describe the warranted performance of calinbrated instruments. Data represented in this document are specifications under the following conditions unless otherwise noted.

- Specifications are valid from 40 to 65 °C for individual module temperature, as reported by the module, and 20 to 35 °C for environment temperature unless otherwise noted
- Calibrated instrument has been stored for a minimum of 2 hours within the allowed operating range
- If instrument has previously been stored at a temperature range inside the allowed storage range, but outside the allowed operating range, instrument must have been stored for a minimum of 2 hours within the allowed operating range before turn-on
- 45-minute warm-up time
- Calibration cycle maintained
- The RF, IF, and Source Alignments have been run within the previous 7 days
- An ALL Alignment has been run:
 - Within the previous 8 hours
 - If the temperature has changed more than 5 °C from the previous "ALL" alignment

Typical describes additional product performance information that is not covered by the product warranty. It is performance beyond specifications that 95 percent of the units exhibit with a 95 percent confidence level. This data, shown in italics, does not include measurement uncertainty, and is valid only at room temperature (approximately 25 °C) after alignment within the stated alignment time and temperature limits.

Nominal values indicate expected performance, or describe product performance that is useful in the application of the product, but are not covered by the product warranty.

Recommended best practices in use

- Use slot blockers and EMC filler panels in empty module slots to ensure proper operating temperatures. Keysight chassis and slot blockers optimize module temperature performance and reliability of test.
- Set chassis fan to high at environmental temperatures above 45 °C.

Vector Signal Analyzer Performance

Performance		
Capture depth		
Standard	256 MSa of IQ data	
Option M9420A-M05	512 MSa of IQ data	
Frequency and time specifications		
Frequency range		
Option M9420A-504	60 MHz to 3.8 GHz	
Option M9420A-506	60 MHz to 6 GHz	
Frequency reference		
Accuracy, aging rate, stability	refer to M9300A specifications	
CW measurement frequency accuracy		
Accuracy	(Transmitter frequency x frequency reference acc	uracy) ± 50 Hz typically
Resolution	1 Hz typical	
Analysis bandwidth		
Maximum bandwidth		
Standard	60 to 70 MHz	20 MHz
	70 to 230 MHz	40 MHz
	230 to 400 MHz	40 MHz
	400 MHz to 6 GHz	40 MHz
Option M9420A-B80	60 to 70 MHz	20 MHz
	70 to 230 MHz	40 MHz
	230 to 400 MHz	80 MHz
	400 MHz to 6 GHz	80 MHz
Option M9420A-B1X	60 to 70 MHz	20 MHz
	70 to 230 MHz	40 MHz
	230 to 400 MHz	80 MHz
	400 MHz to 6 GHz	160 MHz
Triggering		
Trigger		
IQ analyzer	Free run, external 1, external 2, RF burst, video, li	ne, periodic
Trigger delay range	–15 to 500 ms	
Resolution	0.1 μs	
Amplitude accuracy and range specifications		
Maximum average power input		
RF input port	+27 dBm	
Option M9420A-HDX, Half duplex port	+30 dBm	
Option M9420A-FDX, Full duplex port	+36 dBm	<u> </u>

CW absolute amplitude accuracy		
RF input port (in specified frequencies	s)	
Frequency Range	Input level ≤ -8 dBm to -70 dBm	Input level > -8 dBm to +24 dBm
60 MHz to 230 MHz	$< \pm 0.55$ dB, $< \pm 0.20$ dB typical	$< \pm 0.65 dB, < \pm 0.30 dB typical$
230 MHz to 380 MHz		
40 MHz BW	$< \pm 0.55 dB, < \pm 0.20 dB typical$	$< \pm 0.55 dB, < \pm 0.25 dB typical$
80 MHz BW	$< \pm 0.65 dB, < \pm 0.35 dB typical$	$< \pm 0.70 dB, < \pm 0.30 dB typical$
380 MHz to 510 MHz		
40 MHz BW	$< \pm 0.50 dB, < \pm 0.15 dB typical$	< ± 0.55 dB, < ± 0.25 dB typical
80 MHz BW	$< \pm 0.65 dB, < \pm 0.35 dB typical$	$< \pm 0.70 dB, < \pm 0.30 dB typical$
160 MHz BW	$< \pm 0.60 dB, < \pm 0.25 dB typical$	$< \pm 0.70 dB, < \pm 0.35 dB typical$
510 MHz to 820 MHz		
40 MHz BW	$< \pm 0.45 dB, < \pm 0.20 dB typical$	$< \pm 0.55 dB, < \pm 0.30 dB typical$
80 MHz BW	< ± 0.55 dB, < ± 0.20 dB typical	< ± 0.50 dB, < ± 0.20 dB typical
160 MHz BW	< ± 0.50 dB, < ± 0.20 dB typical	< ± 0.50 dB, < ± 0.20 dB typical
820 MHz to 1000 MHz		
40 MHz BW	$< \pm 0.50 dB, < \pm 0.20 dB typical$	< ± 0.50 dB, < ± 0.30 dB typical
80 MHz BW	< ± 0.45 dB, < ± 0.15 dB typical	< ± 0.50 dB, < ± 0.20 dB typical
160 MHz BW	< ± 0.50 dB, < ± 0.15 dB typical	< ± 0.60 dB, < ± 0.25 dB typical
1000 MHz to 2110 MHz		
40 MHz BW	$< \pm 0.50 dB, < \pm 0.20 dB typical$	$< \pm 0.65 dB, < \pm 0.35 dB typical$
80 MHz BW	< ± 0.60 dB, < ± 0.25 dB typical	< ± 0.60 dB, < ± 0.20 dB typical
160 MHz BW	< ± 0.60 dB, < ± 0.20 dB typical	< ± 0.60 dB, < ± 0.25 dB typical
2110 MHz to 3200 MHz	, , , , , , , , , , , , , , , , , , , ,	
40 MHz BW	$< \pm 0.60 dB, < \pm 0.25 dB typical$	< ± 0.70 dB, < ± 0.35 dB typical
80 MHz BW	$\langle \pm 0.65 \text{ dB}, \langle \pm 0.30 \text{ dB typical} \rangle$	$< \pm 0.60 dB, < \pm 0.20 dB typical$
160 MHz BW	$< \pm 0.65 \text{ dB}, < \pm 0.30 \text{ dB typical}$	< ± 0.70 dB, < ± 0.30 dB typical
3200 MHz to 3310 MHz	,	
40 MHz BW	$< \pm 0.65 dB, < \pm 0.25 dB typical$	$< \pm 0.70 dB, < \pm 0.40 dB typical$
80 MHz BW	< ± 0.65 dB, < ± 0.30 dB typical	< ± 0.70 dB, < ± 0.25 dB typical
160 MHz BW	< ± 0.70 dB, < ± 0.30 dB typical	< ± 0.85 dB, < ± 0.40 dB typical
3310 MHz to 3620 MHz	,)r	,);
40 MHz BW	$< \pm 0.70 dB, < \pm 0.35 dB typical$	< ± 0.65 dB, < ± 0.35 dB typical
80 MHz BW	< ± 0.70 dB, < ± 0.35 dB typical	< ± 0.65 dB, < ± 0.25 dB typical
160 MHz BW	$< \pm 0.70 \text{ dB}, < \pm 0.35 \text{ dB typical}$	$< \pm 0.75 \text{ dB}, < \pm 0.40 \text{ dB typical}$
3620 MHz to 3900 MHz	,	,);
40 MHz BW	$< \pm 0.65 dB, < \pm 0.35 dB typical$	< ± 0.70 dB, < ± 0.40 dB typical
80 MHz BW	$\langle \pm 0.65 \text{ dB}, \langle \pm 0.65 \text{ dB typical} \rangle$	< ± 0.70 dB, < ± 0.30 dB typical
160 MHz BW	$\langle \pm 0.70 \text{ dB}, \langle \pm 0.30 \text{ dB typical} \rangle$	< ± 0.85 dB, < ± 0.40 dB typical
3900 MHz to 4500 MHz	,	,
40 MHz BW	$< \pm 0.80 dB, < \pm 0.40 dB typical$	< ± 1.00 dB, < ± 0.55 dB typical
80 MHz BW	$\langle \pm 0.80 \text{ dB}, \langle \pm 0.35 \text{ dB typical} \rangle$	< ± 0.80 dB, < ± 0.30 dB typical
160 MHz BW	< ± 0.70 dB, < ± 0.35 dB typical	< ± 0.80 dB, < ± 0.35 dB typical
4500 MHz to 6000 MHz	5 5 db, \ _ 5.05 db typiodt	. = 0.00 db, \ = 0.00 db typiodt
40 MHz BW	$< \pm 0.90 dB, < \pm 0.40 dB typical$	< ± 1.00 dB, < ± 0.55 dB typical
80 MHz BW	< ± 0.80 dB, < ± 0.40 dB typical	< ± 0.80 dB, < ± 0.35 dB typical
160 MHz BW	< ± 0.80 dB, < ± 0.35 dB typical	< ± 0.80 dB, < ± 0.35 dB typical

Half duplex port, Option M9420A-HD	X (in specified frequencies)	
Frequency range	Input level ≤ −8 dBm to −70 dBm	Input level > -8 dBm to +24 dBm
60 MHz to 230 MHz	< ± 0.50 dB, < ± 0.20 dB typical	< ± 0.55 dB, < ± 0.25 dB typical
230 MHz to 380 MHz	< ± 0.55 dB, < ± 0.25 dB typical	< ± 0.60 dB, < ± 0.30 dB typical
380 MHz to 510 MHz		
40 MHz BW	$< \pm 0.50 dB, < \pm 0.20 dB typical$	< ± 0.55 dB, < ± 0.25 dB typical
80 MHz BW	$< \pm 0.50 dB, < \pm 0.15 dB typical$	$< \pm 0.60 dB, < \pm 0.25 dB typical$
160 MHz BW	$< \pm 0.60$ dB, $< \pm 0.25$ dB typical	$< \pm 0.65$ dB, $< \pm 0.30$ dB typical
510 MHz to 820 MHz	$< \pm 0.50$ dB, $< \pm 0.20$ dB typical	$< \pm 0.55$ dB, $< \pm 0.25$ dB typical
820 MHz to 1000 MHz	$< \pm 0.55$ dB, $< \pm 0.25$ dB typical	$< \pm 0.55$ dB, $< \pm 0.25$ dB typical
1000 MHz to 2110MHz		
40 MHz BW	$< \pm 0.60 dB, < \pm 0.30 dB typical$	$< \pm 0.60 dB, < \pm 0.30 dB typical$
80 MHz BW	$< \pm 0.60$ dB, $< \pm 0.25$ dB typical	$< \pm 0.60$ dB, $< \pm 0.30$ dB typical
160 MHz BW	$< \pm 0.60$ dB, $< \pm 0.20$ dB typical	$< \pm 0.65$ dB, $< \pm 0.30$ dB typical
2110 MHz to 3200 MHz		
40 MHz BW	$< \pm 0.65$ dB, $< \pm 0.30$ dB typical	$< \pm 0.70$ dB, $< \pm 0.40$ dB typical
80 MHz BW	$< \pm 0.65 dB, < \pm 0.25 dB typical$	$< \pm 0.70 \text{ dB}, < \pm 0.35 \text{ dB typical}$
160 MHz BW	$< \pm 0.65$ dB, $< \pm 0.30$ dB typical	$< \pm 0.70$ dB, $< \pm 0.35$ dB typical
3200 MHz to 3310 MHz		
40 MHz BW	$< \pm 0.60 dB, < \pm 0.30 dB typical$	$< \pm 0.65$ dB, $< \pm 0.35$ dB typical
80 MHz BW	$< \pm 0.60 dB, < \pm 0.20 dB typical$	$< \pm 0.70 \text{ dB}, < \pm 0.35 \text{ dB typical}$
160 MHz BW	$< \pm 0.60$ dB, $< \pm 0.20$ dB typical	$< \pm 0.70$ dB, $< \pm 0.35$ dB typical
3310 MHz to 3620 MHz		
40 MHz BW	$< \pm 0.70 dB, < \pm 0.35 dB typical$	$< \pm 0.70 \text{ dB}, < \pm 0.35 \text{ dB typical}$
80 MHz BW	$< \pm 0.70 dB, < \pm 0.25 dB typical$	$< \pm 0.70 \text{ dB}, < \pm 0.35 \text{ dB typical}$
160 MHz BW	$< \pm 0.70 dB, < \pm 0.30 dB typical$	$< \pm 0.75$ dB, $< \pm 0.40$ dB typical
3620 MHz to 3900 MHz		
40 MHz BW	$< \pm 0.70 dB, < \pm 0.35 dB typical$	$< \pm 0.75 dB, < \pm 0.40 dB typical$
80 MHz BW	$< \pm 0.70 dB, < \pm 0.30 dB typical$	$< \pm 0.75 dB, < \pm 0.40 dB typical$
160 MHz BW	$< \pm 0.85$ dB, $< \pm 0.40$ dB typical	$< \pm 0.75$ dB, $< \pm 0.35$ dB typical
3900 MHz to 4500 MHz	< ± 0.85 dB, < ± 0.35 dB typical	< ± 0.90 dB, < ± 0.50 dB typical
4500 MHz to 6000 MHz	< ± 0.95 dB, < ± 0.5 dB typical	< ± 1.00 dB, < ± 0.55 dB typical
	,	

Full duplex port, option M9420A-FDX	(in specified frequencies)	
Frequency range	Input level ≤ -8 dBm to -65 dBm	Input level > -8 dBm to +33 dBm
60 MHz to 230 MHz	< ± 0.50 dB, < ± 0.20 dB typical	< ± 0.60 dB, < ± 0.30 dB typical
230 MHz to 380 MHz	< ± 0.50 dB, < ± 0.15 dB typical	< ± 0.60 dB, < ± 0.25 dB typical
380 MHz to 510 MHz	< ± 0.50 dB, < ± 0.20 dB typical	< ± 0.60 dB, < ± 0.25 dB typical
510 MHz to 820 MHz	< ± 0.50 dB, < ± 0.20 dB typical	< ± 0.60 dB, < ± 0.30 dB typical
320 MHz to 1000 MHz	< ± 0.50 dB, < ± 0.30 dB typical	< ± 0.60 dB, < ± 0.20 dB typical
1000 MHz to 2110MHz		
40 MHz BW	$< \pm 0.50 dB, < \pm 0.20 dB typical$	$< \pm 0.60 dB, < \pm 0.35 dB typical$
80 MHz BW	< ± 0.50 dB, < ± 0.20 dB typical	< ± 0.60 dB, < ± 0.30 dB typical
160 MHz BW	< ± 0.65 dB, < ± 0.20 dB typical	< ± 0.70 dB, < ± 0.35 dB typical
2110 MHz to 3200 MHz		
40 MHz BW	$< \pm 0.60 dB, < \pm 0.30 dB typical$	$< \pm 0.70 dB, < \pm 0.40 dB typical$
80 MHz BW	$< \pm 0.60 dB, < \pm 0.30 dB typical$	$< \pm 0.70 dB, < \pm 0.35 dB typical$
160 MHz BW	$< \pm 0.65$ dB, $< \pm 0.30$ dB typical	$< \pm 0.85 dB, < \pm 0.40 dB typical$
3200 MHz to 3310 MHz		
40 MHz BW	$< \pm 0.60 dB, < \pm 0.30 dB typical$	$< \pm 0.70 dB, < \pm 0.40 dB typical$
80 MHz BW	$< \pm 0.60 dB, < \pm 0.25 dB typical$	$< \pm 0.70 dB, < \pm 0.35 dB typical$
160 MHz BW	$< \pm 0.70$ dB, $< \pm 0.25$ dB typical	$< \pm 0.75$ dB, $< \pm 0.40$ dB typical
3310 MHz to 3620 MHz		
40 MHz BW	$< \pm 0.75 \text{ dB}, < \pm 0.35 \text{ dB typical}$	$< \pm 0.75 dB, < \pm 0.40 dB typical$
80 MHz BW	$< \pm 0.75 \text{ dB}, < \pm 0.35 \text{ dB typical}$	$< \pm 0.75 \text{ dB}, < \pm 0.35 \text{ dB typical}$
160 MHz BW	$< \pm 0.75$ dB, $< \pm 0.35$ dB typical	$< \pm 0.85$ dB, $< \pm 0.50$ dB typical
3620 MHz to 3900 MHz		
40 MHz BW	$< \pm 0.65 dB, < \pm 0.30 dB typical$	$< \pm 0.70 dB, < \pm 0.40 dB typical$
80 MHz BW	$< \pm 0.65 dB, < \pm 0.30 dB typical$	$< \pm 0.70 dB, < \pm 0.35 dB typical$
160 MHz BW	$< \pm 0.75$ dB, $< \pm 0.30$ dB typical	$< \pm 0.70$ dB, $< \pm 0.35$ dB typical
3900 MHz to 4500 MHz		
40 MHz BW	$< \pm 0.70 dB, < \pm 0.35 dB typical$	$< \pm 0.75 \text{ dB}, < \pm 0.40 \text{ dB typical}$
80 MHz BW	$< \pm 0.70 dB, < \pm 0.35 dB typical$	$< \pm 0.75 \text{ dB}, < \pm 0.40 \text{ dB typical}$
160 MHz BW	$< \pm 0.90$ dB, $< \pm 0.35$ dB typical	$< \pm 0.75$ dB, $< \pm 0.40$ dB typical
4500 MHz to 6000 MHz		
40 MHz BW	$< \pm 1.00 dB, < \pm 0.55 dB typical$	$< \pm 0.80$ dB, $< \pm 0.40$ dB typical
80 MHz BW	$< \pm 0.75 dB, < \pm 0.35 dB typical$	$< \pm 0.80 dB, < \pm 0.40 dB typical$
160 MHz BW	$< \pm 0.90 dB, < \pm 0.50 dB typical$	$< \pm 0.80 dB, < \pm 0.40 dB typical$

Input voltage standing wave ratio (VSWR)	
RF input port (in specified frequencies) 60 to 600 MHz	< 2.0:1 nominal
600 MHz to 3 GHz	< 1.5:1 nominal
3 to 4.2 GHz	< 1.7:1 nominal
4.2 to 6 GHz	< 1.9:1 nominal
Option M9420A-HDX, half duplex port (configured to input mode i	n specified frequencies)
60 MHz to 3 GHz	< 1.4:1 nominal
3 to 6 GHz	< 1.6:1 nominal
Option M9420A-FDX, full duplex port (configured to input mode in	specified frequencies)
60 MHz to 3 GHz	< 1.4:1 nominal
3 to 6 GHz	< 1.5:1 nominal
Spurious responses (in specified frequencies)	
Residual responses in specified frequency ranges	
RF input port with analyzer range = 0 dBm	
60 MHz to 230 MHz	< -77 dBm typical
230 MHz to 3.3 GHz	< -90 dBm typical
3.3 to 3.9 GHz	< -80 dBm typical
3.9 to 6 GHz	< -87 dBm typical
Half duplex port with analyzer ranged to < -30 dBm	
60 MHz to 6 GHz	< -90 dBm typical
Full duplex port with analyzer ranged to < -30 dBm	
60 MHz to 3.9 GHz	< -100 dBm typical
3.9 GHz to 6 GHz	< -90 dBm typical
Other spurious, for offsets from 10 MHz up to half the maximum analysis bandwidth from the signal in specified frequency bands	< -62 dBc typical with analyzer ranged to signal peak power level
Phase noise sidebands, (CF = 900 MHz)	
10 kHz offset	< -107 dBc/Hz, < -111 dBc/Hz typical
1 MHz offset	< -129 dBc/Hz, < -132 dBc/Hz typical

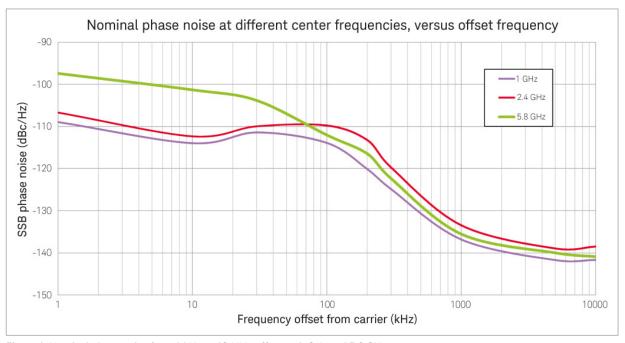


Figure 1. Nominal phase noise from 1 kHz to 10 MHz offset at 1, 2.4, and 5.8 GHz.

Displayed average noise floor (DANL)	1		
RF input port (in specified frequencies,	, with analyzer ranged to -70 dBm)		
60 to 380 MHz	–161 dBm, –165 dBm typical		
380 to 820 MHz	-160 dBm, -164 dBm typical		
820 MHz to 1 GHz	–159 dBm, –164 dBm typical		
1 to 2.11 GHz	–155 dBm, –160 dBm typical		
2.11 to 3.2 GHz	-152 dBm, -157 dBm typical		
3.2 to 3.31 GHz	–158 dBm, –162 dBm typical		
3.31 to 3.9 GHz	-156 dBm, -160 dBm typical		
3.9 to 4.5 GHz	–155 dBm, –159 dBm typical		
4.5 to 6 GHz	–152 dBm, –157 dBm typical		
Half duplex port, option M9420A-HDX	(in specified frequencies, with analyzer ranged to	-70 dBm)	
60 to 230 MHz	-157 dBm, -162 dBm typical		
230 to 820 MHz	–156 dBm, –161 dBm typical		
820 MHz to 1 GHz	–155 dBm, –160 dBm typical		
1 to 2.11 GHz	–152 dBm, –157 dBm typical		
2.11 to 3.2 GHz	–150 dBm, –154 dBm typical		
3.2 to 3.31 GHz	–154 dBm, –159 dBm typical		
3.31 to 3.62 GHz	–152 dBm, –157 dBm typical		
3.62 to 3.9 GHz	–153 dBm, –157 dBm typical		
3.9 to 4.5 GHz	–150 dBm, –156 dBm typical		
4.5 to 6 GHz	–148 dBm, –153 dBm typical		
Full duplex port, option M9420A-FDX (in specified frequencies, with analyzer ranged to	-65 dBm)	
60 to 380 MHz	–150 dBm, –155 dBm typical		
380 to 510 MHz	–149 dBm, –154 dBm typical		
510 MHz to 820 MHz	–150 dBm, –154 dBm typical		
820 MHz to 1 GHz	–148 dBm, –153 dBm typical		
1 to 2.11 GHz	–144 dBm, –150 dBm typical		
2.11 to 3.2 GHz	–141 dBm, –147 dBm typical		
3.2 to 3.31 GHz	–147 dBm, –151 dBm typical		
3.31 to 3.62 GHz	–144 dBm, –148 dBm typical		
3.62 to 3.9 GHz	–145 dBm, –150 dBm typical		
3.9 to 4.5 GHz	-143 dBm, -148 dBm typical	–143 dBm, –148 dBm typical	
4.5 to 6 GHz	–139 dBm, –144 dBm typical		
Third-order intermodulation distortio	n (TOI)		
60 MHz to 6 GHz	+25 dBm nominal with analyzer rang		
	+33 dBm nominal with analyzer ran	+33 dBm nominal with analyzer ranged to +10 dBm	
IF flatness			
Center frequency (GHz)	Span (MHz)	Max. error (nominal)	
≤ 6.0	≤ 160	± 0.30 dB	

^{1.} Input terminated, log power average, and normalized to 1 Hz bandwidth

Vector Signal Generator Performance

Performance			
Arb baseband bandwidth			
Standard M9420A-B40	60 to 230 MHz	20 MHz	
	230 to 340 MHz	40 MHz	
	340 to 400 MHz	40 MHz	
	400 to 6 GHz	40 MHz	
Option M9420A-B80	60 to 230 MHz	20 MHz	
	230 to 340 MHz	40 MHz	
	340 to 400 MHz	80 MHz	
	400 to 6 GHz	80 MHz	
Option M9420A-B1X	60 to 230 MHz	20 MHz	
	230 to 340 MHz	40 MHz	
	340 to 400 MHz	80 MHz	
	400 to 6 GHz	160 MHz	
Arb sample memory (storage capacity)			
Standard	256 MSa of IQ data		
Option M9420A-M05	512 MSa of IQ data		
Frequency specifications			
Frequency range			
Option M9420A-504	60 MHz to 3.8 GHz		
Option M9420A-506	60 MHz to 6 GHz		
Frequency reference			
Accuracy, aging rate, stability	Refer to M9300A specifications		
Frequency switching speed ¹			
Baseband frequency offset change ²	≤ 400 µs, nominal		
Arbitrary frequency change ³	≤ 2 ms, nominal		

Switching speed depends highly upon the hardware and controller that is used. Measurements were made with the M9420A in an M9018A chassis with the M9037A embedded controller.

Mean time from IVI command until baseband frequency changed from 0 to 1 kHz

Mean time from IVI command until RF frequency changed from 1.8 to 1.0 GHz

Amplitude specifications	
Settable range	
Standard	
RF output port	-150 to +10 dBm
Option M9420A-HDX	–150 to +10 dBm
Option M9420A-FDX	-150 to 0 dBm
Option M9420A-1EA	
RF output port	-150 to +18 dBm
Option M9420A-HDX	-150 to +15 dBm
Option M9420A-FDX	-150 to 0 dBm
Output level range	
Standard	
RF output port	
60 MHz to 6 GHz	-130 to +10 dBm
Option M9420A-HDX (configured to output mode)	
60 MHz to 6 GHz	-130 to +5 dBm (-130 to +10 dBm CW typical)
Option M9420A-FDX full duplex port	
60 MHz to 3.9 GHz	-130 to -15 dBm (-130 to -5 dBm CW typical)
3.9 to 6 GHz	–120 to –20 dBm (–130 to –10 dBm CW typical)
Option M9420A-1EA	
RF output port	
60 MHz to 3.9 GHz	-130 to +18 dBm
3.9 GHz to 6 GHz	-130 to +18 dBm
Option M9420A-HDX (configured to output mode)	
60 MHz to 6 GHz	-130 to +5 dBm (-130 to +15 dBm CW typical)
Option M9420A-FDX full duplex port	
60 MHz to 3.9 GHz	-130 to -15 dBm (-130 to -5 dBm CW typical)
3.9 to 6 GHz	–120 to –15 dBm (–130 to –10 dBm CW typical)
Amplitude switching speed ¹	
Baseband power level change ²	≤ 400 µs, nominal
Arbitrary power level change ³	≤ 2 ms, nominal

Switching speed depends highly upon the hardware and controller that is used. Measurements were made with the M9420A in an M9018A chassis with the M9037A embedded controller.

Mean time from IVI command until baseband amplitude changed by 5 dB

Mean time from IVI command until RF amplitude changed from 0 to -10 dBm

Absolute level accuracy (specified frequence	cies, CW)	
RF output port		
60 MHz to 380 MHz Level ≤ +20 dBm to -15 dBm Level ≤ -15 dBm to -80 dBm Level ≤ -80 dBm to -120 dBm	< ± 0.50 dB, < ± 0.15 dB typical < ± 0.55 dB, < ± 0.25 dB typical < ± 0.85 dB, < ± 0.50 dB typical	
380 MHz to 1325 MHz Level ≤ +20 dBm to -15 dBm Level ≤ -15 dBm to -80 dBm Level ≤ -80 dBm to -120 dBm	< ± 0.50 dB, < ± 0.20 dB typical < ± 0.50 dB, < ± 0.20 dB typical < ± 0.85 dB, < ± 0.50 dB typical	
1325 MHz to 2700 MHz Level ≤ +20 dBm to -15 dBm Level ≤ -15 dBm to -80 dBm Level ≤ -80 dBm to -120 dBm	$<\pm$ 0.50 dB, $<\pm$ 0.15 dB typical $<\pm$ 0.55 dB, $<\pm$ 0.25 dB typical $<\pm$ 0.90 dB, $<\pm$ 0.45 dB typical	
2700 MHz to 3900 MHz Level ≤ +20 dBm to -15 dBm Level ≤ -15 dBm to -80 dBm Level ≤ -80 dBm to -110 dBm	$<\pm0.70$ dB, $<\pm0.25$ dB typical $<\pm0.70$ dB, $<\pm0.30$ dB typical $<\pm1.10$ dB, $<\pm0.55$ dB typical	
3900 MHz to 6000 MHz Level ≤ +20 dBm to -15 dBm Level ≤ -15 dBm to -80 dBm Level ≤ -80 dBm to -100 dBm	$<\pm$ 0.65 dB, $<\pm$ 0.20 dB typical $<\pm$ 1.0 dB, $<\pm$ 0.50 dB typical $<\pm$ 1.10 dB, $<\pm$ 0.60 dB typical	
Option M9420A-HDX, half duplex port		
60 MHz to 380 MHz Level ≤ +5 dBm to -15 dBm Level ≤ -15 dBm to -80 dBm Level ≤ -80 dBm to -120 dBm	$<\pm$ 0.55 dB, $<\pm$ 0.20 dB typical $<\pm$ 0.50 dB, $<\pm$ 0.25 dB typical $<\pm$ 0.80 dB, $<\pm$ 0.40 dB typical	
380 MHz to 1325 MHz Level ≤ +5 dBm to -15 dBm Level ≤ -15 dBm to -80 dBm Level ≤ -80 dBm to -120 dBm	$<\pm$ 0.55 dB, $<\pm$ 0.20 dB typical $<\pm$ 0.50 dB, $<\pm$ 0.20 dB typical $<\pm$ 0.85 dB, $<\pm$ 0.45 dB typical	
1325 MHz to 2700 MHz Level ≤ +5 dBm to -15 dBm Level ≤ -15 dBm to -80 dBm Level ≤ -80 dBm to -120 dBm	$<\pm$ 0.55 dB, $<\pm$ 0.15 dB typical $<\pm$ 0.75 dB, $<\pm$ 0.35 dB typical $<\pm$ 0.95 dB, $<\pm$ 0.45 dB typical	
2700 MHz to 3900 MHz Level ≤ +5 dBm to -15 dBm Level ≤ -15 dBm to -80 dBm Level ≤ -80 dBm to -110 dBm	< ± 0.65 dB, < ± 0.15 dB typical < ± 0.65 dB, < ± 0.30 dB typical < ± 1.10 dB, < ± 0.55 dB typical	
3900 MHz to 6000 MHz Level ≤ +5 dBm to -15 dBm Level ≤ -15 dBm to -80 dBm Level ≤ -80 dBm to -100 dBm	$<\pm$ 0.70 dB, $<\pm$ 0.20 dB typical $<\pm$ 0.90 dB, $<\pm$ 0.45 dB typical $<\pm$ 1.10 dB, $<\pm$ 0.50 dB typical	
Option M9420A-FDX, full duplex port		
60 MHz to 380 MHz Level ≤ -15 dBm to -80 dBm Level ≤ -80 dBm to -120 dBm	$<\pm$ 0.55 dB, $<\pm$ 0.25 dB typical $<\pm$ 0.80 dB, $<\pm$ 0.40 dB typical	
380 MHz to 1325 MHz Level ≤ -15 dBm to -80 dBm Level ≤ -80 dBm to -120 dBm	$<\pm0.65$ dB, $<\pm0.20$ dB typical $<\pm0.80$ dB, $<\pm0.45$ dB typical	
1325 MHz to 2700 MHz Level ≤ -15 dBm to -80 dBm Level ≤ -80 dBm to -120 dBm	$<\pm0.65$ dB, $<\pm0.20$ dB typical $<\pm0.85$ dB, $<\pm0.50$ dB typical	
2700 MHz to 3900 MHz Level ≤ -15 dBm to -80 dBm Level ≤ -80 dBm to -110 dBm	< ± 0.70 dB, < ± 0.30 dB typical < ± 1.0 dB, < ± 0.45 dB typical	
3900 MHz to 6000 MHz Level ≤ -15 dBm to -80 dBm Level ≤ -80 dBm to -100 dBm	< ± 0.80 dB, < ± 0.30 dB typical < ± 1.0 dB, < ± 0.35 dB typical	

Setting resolution		
	0.01 dB	
Output voltage standing wave ratio (VSWF	2)	
RF output port (in specified frequencies)		
60 to 600 MHz	< 1.6:1 nominal	
600 MHz to 2.8 GHz	< 1.5:1 nominal	
2.8 to 5 GHz	< 1.6:1 nominal	
5 to 6 GHz	< 1.9:1 nominal	
Option M9420A-HDX, half duplex port (config	gured to output mode in specified frequencies	5)
60 MHz to 2.9 GHz	< 1.5:1 nominal	
2.9 to 6 GHz	< 2.0:1 nominal	
Option M9420A-FDX, full duplex port (config	ured to output mode in specified frequencies)	
60 MHz to 2.9 GHz	< 1.5:1 nominal	
2.9 to 6 GHz	< 1.6:1 nominal	
Harmonics and spurious		
RF output port; harmonics and sub-harmonic	es	
+10 dBm output power	< -40 dBc nominal	
Option M9420A-HDX, half duplex port; harm	onics and sub-harmonics	
+0 dBm output power	< -40 dBc nominal	
Option M9420A-FDX, full duplex port; harmo	nics and sub-harmonics	
–15 dBm output power	< -40 dBc nominal	
All ports; non-harmonic spurious (CW mod	le, specified frequency ranges)	
60 MHz to 3.8 GHz	< -62 dBc nominal	
3.8 to 6 GHz	< -58 dBc nominal	
Phase noise		
Option M9420A-FDX, full duplex port, -5 dB	m; Option M9420A-HDX, half duplex port, +5	dBm; RF output port, +15 dBm, CF = 900 MHz
10 kHz offset	≤ -106 dBc, -112 dBc typical	
100 kHz offset	≤ -109 dBc, -113 dBc typical	
1 MHz offset	≤ –128 dBc, –134 dBc typical	
10 MHz offset	≤ -131 dBc, -135 dBc typical	
Broadband noise floor		
RF output port	Output level = +18 dBm	Output level = -30 dBm
60 MHz to 3.5 GHz	–125 dBm, typical	–159 dBm, typical
3.5 to 5.5 GHz	–120 dBm, typical	–161 dBm, typical
5.5 to 6 GHz	–114 dBm, typical	–156 dBm, typical
Option M9420A-HDX, half duplex port	Output level = +5 dBm	Output level = -30 dBm
60 to 380 MHz	–128 dBm, typical	–159 dBm, typical
380 MHz to 5.5 GHz	–130 dBm, typical	–160 dBm, typical
5.5 to 6 GHz	–124 dBm, typical	–158 dBm, typical
Option M9420A-FDX, full duplex port	Output level = -15 dBm	Output level = -30 dBm
60 to 380 MHz	–147 dBm, typical	–160 dBm, typical
380 MHz to 3.5 GHz	–151 dBm, typical	–159 dBm, typical
3.5 to 5.5 GHz	–152 dBm, typical	–161 dBm, typical
5.5 to 6 GHz	–146 dBm, typical	–158 dBm, typical

General Specifications

Operating temperature	+5 to +45 °C
Storage temperature	-40 to +70 °C
EMC	Complies with European EMC Directive 2004/108/EC — IEC/EN 61326-1
	- CISPR Pub 11 Group 1, class A
	- AS/NZS CISPR 11
	- ICES/NMB-001
	This ISM device complies with Canadian ICES-001
Environmental stress	Samples of this product have been type tested in accordance with the Keysight Environmental Test
	Manual and verified to be robust against the environmental stresses of storage, transportation, and
	end-use; those stresses include, but are not limited to, temperature, humidity, shock, vibration,
	altitude, and power line conditions; test methods are aligned with IEC 60068-2 and levels are similar
	to MILPRF-28800F Class 3.
Safety	 Complies with European Low Voltage Directive 2006/95/EC
	- IEC/EN 61010-1
	- Canada: CSA C22.2 No. 61010-1-04
	– USA: UL Std. 61010-1
Power requirement	
Power drawn from chassis	≤ 120 W
Weight	
Net	1.6 kg (3.6 lbs)
Shipping	3.8 kg (8.4 lbs)
Dimensions	
Height	130 mm (5.1 in)
Width	82 mm (3.2 in)
Length	209.5 mm (8.25 in)
Warranty	
The VXT PXIe vector transceiver is supp	olied with a three-year warranty
Calibration cycle	
The recommended calibration cycle is t	wo year; calibration services are available through Keysight service centers

Front Panel

Ref In	
Connector	SMB male, 50Ω nominal
RF connections	
RF Input	SMA female, 50 Ω nominal
RF Output	SMA female, 50 Ω nominal
RFHD	SMA female, 50 Ω nominal
RFFD	SMA female, 50 Ω nominal
Trigger connections	
Trigger In 1, Trigger In 2	Connector: SMB male Impedance: $10\ k\Omega$ nominal Trigger level range: $-3.5\ to$ $+3.5\ V$
Trigger Out 1, Trigger Out 2	Connector: SMB male Impedance: 50 Ω nominal Trigger level range: 3.3 V LVTTL

System Requirements

Windows 7 (32 & 64 bit)
1.86 GHz minimum,
2.4 GHz recommended
4 GB minimum
8 GB recommended
4 GB
Support for DirectX 9 graphics with 128 MB graphics recommended (SuperVGA supported)
Microsoft Internet Explorer 7.0 or greater

Application Specifications

N9071A GSM/EDGE/Evo measurement application key specifications¹

Power versus time (PvT)	
Absolute power accuracy	± 0.36 dB nominal at 0 dBm input power
Phase error (GMSK modulation)	
Phase error	
Average floor	0.30° typical at 0 dBm input power
Peak floor	0.85° typical at 0 dBm input power
EDGE error vector magnitude (EVM)	
EVM	
RMS floor	0.65% typical at 0 dBm input power
Peak floor	2.0% typical at 0 dBm input power
Output RF spectrum (ORFS for GMSK and 8	3PSk modulation)
Residual relative power, spectrum due to mo	odulation
Offset frequency	
600 kHz	-70 dBc typical at 0 dBm input power
1.2 MHz	-75 dBc typical at 0 dBm input power
1.8 MHz	-73 dBc typical at 0 dBm input power
Residual relative power, spectrum due to sv	witching
Offset frequency	
600 kHz	-67 dBc typical at 0 dBm input power
1.2 MHz	-74 dBc typical at 0 dBm input power
1.8 MHz	-76 dBc typical at 0 dBm input power

^{1.} For frequencies from 450 to 490 MHz, 820 to 820 MHz, and 1710 to 1910 MHz

GSM/EDGE/Evo source key specifications¹

Signal quality (RF output port: +15 dBm, Half duplex port: 0 dBm, Full duplex port: -15 dBm)	
< 0.3° nominal	
< 2.0° nominal	
< 1% nominal	
	< 0.3° nominal < 2.0° nominal

Residual relative power, spectrum due to modulation

Offset	GSM, nominal Half duplext/RF output (0 dBm)	Full duplex (-10 dBm)	Full duplex (-15 dBm)	EDGE, nominal Half duplext/RF output (0 dBm)	Full duplex (-10 dBm)	Full duplex (-15 dBm)
200 kHz	-35 dBc	-35 dBc	-35 dBc	-36 dBc	-36 dBc	-36 dBc
400 kHz	-68 dBc	-68 dBc	-68 dBc	-68 dBc	-68 dBc	-68 dBc
600 kHz	-76 dBc	-76 dBc	-76 dBc	-76 dBc	-76 dBc	-75 dBc
1200 kHz	-81 dBc	-81 dBc	-77 dBc	-81 dBc	-81 dBc	-77 dBc
1800 kHz	-77 dBc	-77 dBc	-73 dBc	-76 dBc	-76 dBc	-72 dBc

^{1.} For frequencies from 380 to 490 MHz, 695 to 960 MHz, and 1425 to 2180 MHz

N9073A W-CDMA/HSPA+ measurement application key specifications¹

Channel power	
Absolute power accuracy	± 0.36 dB nominal at 0 dBm input power
QPSK EVM	
Residual EVM	0.85% typical at -10 dBm input power
Adjacent channel leakage ratio (ACLR) and adj	acent channel power ratio (ACPR)
Residual relative power in 3.84 MHz BW 5 MHz offsets	-65 dBc typical at 0 dBm input power
Spectrum Emission Mask (SEM)	
Residual relative power	
2.515 MHz to 3.485 MHz offsets	-80 dBc in a 30 kHz BW typically at 0 dBm input power
4 MHz to 7.5 MHz offsets	-65 dBc in a 1 MHz BW typically at 0 dBm input power
7.5 MHz to 8.5 MHz offsets	-70 dBc in a 1 MHz BW typically at 0 dBm input power
8.5 MHz to 12 MHz offsets	-70 dBc in a 1 MHz BW typically at 0 dBm input power

^{1.} For frequencies from 695 MHz to 920 MHz and specified ranges from 1425 MHz to 2700 MHz

W-CDMA/HSPA+ source key specifications¹

Signal quality (RF output port: +15 dBm, Half duplex port: 0 dBm, Full duplex port: -15 dBm)

Composite EVM

RMS < 1% nominal

Adjacent channel leakage ratio (ACLR)

Offset	Port power level configuration	Frequency (MHz)	RF output/Half duplex 0 dBm nominal (dB)	Full duplex -15 dBm nominal (dB)
Adjacent 5 MHz	1 DPCH 1 carrier	900	-70	-72
Adjacent 10 MHz			-71	-72
Adjacent 5 MHz		1800 to 2200	-70	-72
Adjacent 10 MHz			-71	-72
Adjacent 5 MHz	64 DPCH 1 carrier	900	-70	-70
Adjacent 10 MHz			-71	-72
Adjacent 5 MHz		1800 to 2200	-69	-71
Adjacent 10 MHz			-71	-72

^{1.} For frequencies from 695 MHz to 960 MHz, and 1425 MHz to 2180 MHz

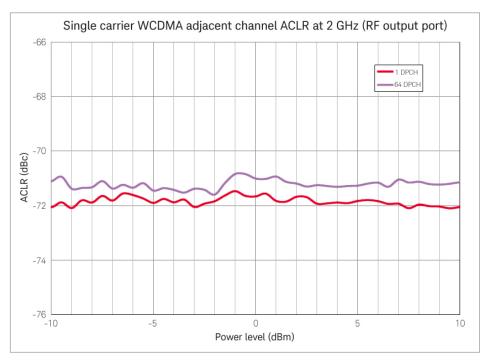


Figure 2. Single carrier W-CDMA adjacent channel ACLR versus power level at 2 GHz, RF output port

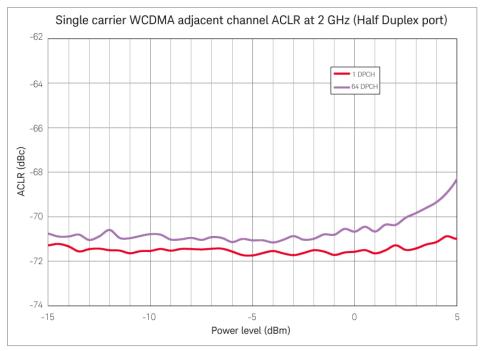
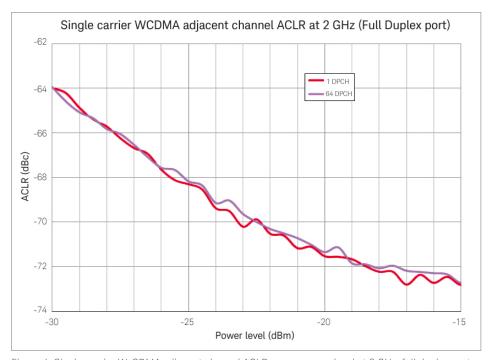



Figure 3. Single carrier W-CDMA adjacent channel ACLR versus power level at 2 GHz, half duplex port

 $Figure\ 4.\ Single\ carrier\ W-CDMA\ adjacent\ channel\ ACLR\ versus\ power\ level\ at\ 2\ GHz,\ full\ duplex\ port$

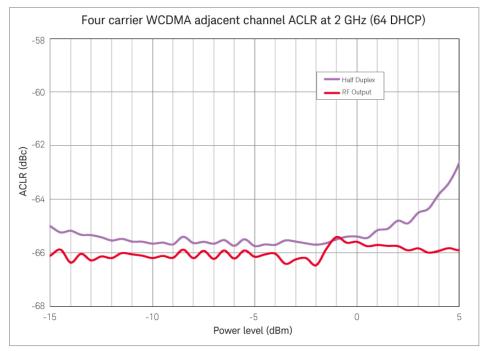


Figure 5. Four carrier W-CDMA adjacent channel ACLR versus power level at 2 GHz, RF output port and half duplex port

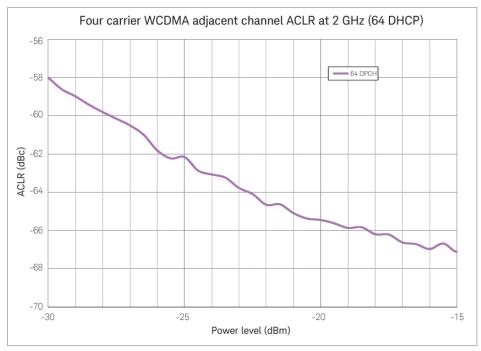


Figure 6. Four carrier W-CDMA adjacent channel ACLR versus power level at 2 GHz, full duplex port

N9072A cdma2000 Measurement Application and N9076A 1xEV-DO Measurement Application Key Specifications¹

Channel power	
Absolute power accuracy	± 0.36 dB nominal at 0 dBm input power
Error vector magnitude (EVM)	
Residual EVM	0.85% typical at –10 dBm input power
Adjacent channel power (ACP)	
Residual relative power in 30 kHz BW	
885 kHz offsets	–71 dBc typical at 0 dBm input power
1.98 MHz offsets	-83 dBc typical at 0 dBm input power
4.0 MHz offsets	-82 dBc typical at 0 dBm input power

^{1.} For frequencies from 410 MHz to 484 MHz, 776 MHz to 920 MHz, and 1710 to 1980 MHz

cdma2000 and 1xEV-DO Source Key Specifications¹

Signal quality (RF output port: +15 dBm, half duplex port: 0 dBm, full duplex port: -15 dBm)		
Composite EVM		
RMS	< 1.1% nominal	

^{1.} For frequencies from 380 MHz to 490 MHz, 695 MHz to 960 MHz, and 1425 MHz to 2180 MHz

N9080B LTE/LTE-Advanced FDD & N9082B LTE/LTE-Advanced TDD Measurement Application Key Specifications¹

Transmit power	
•	
Absolute power accuracy	± 0.36 dB nominal at 0 dBm input power
Error vector magnitude (EVM)	
Residual EVM	
5 MHz, 10 MHz, 15 MHz, 20 MHz BW	0.8% typical at -10 dBm input power
Adjacent channel power	
Minimum carrier power at RF input	
RF input port	-20 dBm
Half duplex port	-20 dBm
Full duplex port	−5 dBm
Dynamic range	
E-UTRA	-58 dBc nominal
UTRA	-60 dBc nominal

^{1.} For specified frequency ranges between 695 and 3800 MHz

LTE Source Key Specifications¹

Signal quality (RF output port: +15 dBm, half duplex port: 0 dBm, full duplex port: -15 dBm) Composite EVM RMS < 1.1% nominal Adjacent channel power (ACP)

	Adjacent, nominal		Alternate, nominal	
	RF output/half duplex (0 dBm)	full duplex (-15 dBm)	RF output/half duplex (0 dBm)	full duplex (-15 dBm)
900 MHz	-64	-65	-64	-65
2 GHz	-65	-66	-65	-66

^{1.} For specified frequency ranges between 695 and 3800 $\rm MHz$

N9081A Bluetooth Measurement Application Key Specifications¹

Transmit power	
Absolute power accuracy	± 0.26 dB nominal at 0 dBm input power
Modulation characteristics	
Deviation range	± 250 kHz nominal
EDR modulation accuracy	
Range (rms DEVM)	0 to 12% nominal
Floor	0.6% typical at -20 dBm input power

^{1.} Specifications apply for frequencies between 2400 and 2486 MHz.

Bluetooth Source Key Specifications¹

Bluetooth signal using Signal Studio waveform	
Basic Data Rate (ACL) FSK error at –10 dBm at half duplex port or RF output port	0.65% nominal, DH1 packet, GFSK, standard packet, 2402 MHz
Enhanced Data Rate ACP for -10 dBm signal at half duplex port or RF output port	3-DH1 packet, GFSK +D8PSK, standard packet, 2402 MHz -69 dBm nominal, k=2; -72 dBm nominal, k= 3, 4, 5,78
EDR rms DEVM error	< 1% nominal

^{1.} For specified frequency ranges between 1620 and 2700 MHz

N9079A TD-SCDMA Measurement Application Key Specifications¹

Channel power	
Absolute power accuracy	± 0.36 dB nominal at 0 dBm input power
Error vector magnitude (EVM)	
Residual EVM, 1.6 MHz channel BW	0.75% typical at 0 dBm input power
Adjacent channel leakage ratio (ACLR) and ac	djacent channel power ratio (ACPR)
Residual relative power in 1.28 MHz BW 1.6 MHz offsets 3.2 MHz offsets	–55 dBc typical at 0 dBm input power –70 dBc typical at 0 dBm input power
Spectrum emission mask (SEM)	
Residual relative power 2.515 MHz to 3.485 MHz offsets 4 MHz to 7.5 MHz offsets 7.5 MHz to 8.5 MHz offsets	-54 dBc in a 30 kHz BW typical at 0 dBm input power -68 dBc in a 1 MHz BW typical at 0 dBm input power -71 dBc in a 1 MHz BW typical at 0 dBm input power

^{1.} For specified frequency ranges between 1620 and 2700 MHz

TD-SCDMA Source Key Specifications¹

Signal quality (RF output port: +15 dBm, half duplex port: 0 dBm, full duplex port: -20 dBm)	
Composite EVM	
RMS	< 0.5% nominal

^{1.} For specified frequency ranges between 1620 and 2700 MHz

N9077A WLAN Measurement Application Key Specifications¹

Modulated Power	
Absolute power accuracy 2400 MHz to 2483.5 MHz 5150 MHz to 5185 MHz	± 0.27 dB nominal at 0 dBm input power ± 0.49 dB nominal at 0 dBm input power
Error Vector Magnitude (EVM)	
EVM floor conditions Phase Tracking on, pre-a	amble only, Half duplex port
802.11b 2.4GHz	<-40.9 dB typical at -20 dBm input power
802.11g 2.4 GHz	<-47 dB typical at -20 dBm input power
802.11a 5.8 GHz	<-48 dB typical at -20 dBm input power
802.11n 5.8 GHz 20MHz 802.11n 5.8 GHz 40MHz	<-48 dB typical at -20 dBm input power <-44 dB typical at -20 dBm input power
802.11ac 5.8 GHz 80 MHz 802.11ac 5.8 GHz 160 MHz	<-45 dB typical at -20 dBm input power <-43 dB typical at -20 dBm input power
SEM	
802.11a/g at 2. 4GHz with 20 MHz BW	See Figure 1
802.11a/g at 5.8 GHz with 20 MHz BW	See Figure 2
802.11n at 5.8 GHz with 40 MHz BW	See Figure 3
802.11ac at 5.8 GHz with 80 MHz BW	See Figure 4

^{1.} SEM Transmitter test signal generated by Agilent N5182B MXG signal generator

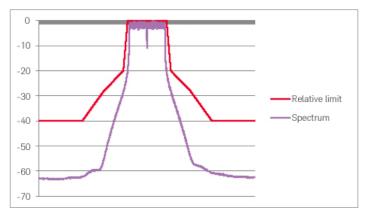


Figure 7. 802.11 a/g SEM nominal performance at 2.4 GHz with 20 MHz BW

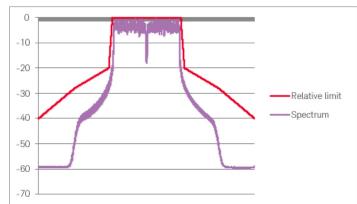


Figure 9. 802.11 n SEM nominal performance at 5.8 GHz with 40 MHz BW

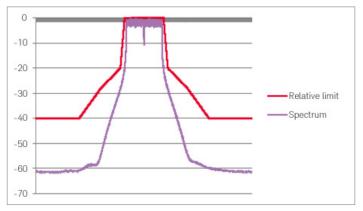


Figure 8. 802.11 a/g SEM nominal performance at 5.8 GHz with 20 MHz BW $\,$

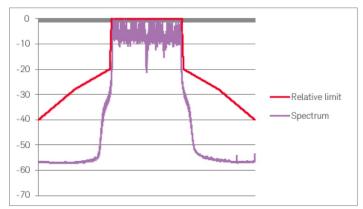


Figure 10. 802.11 ac SEM nominal performance at $5.8~\mathrm{GHz}$ with $80~\mathrm{MHz}$ BW

WLAN Source Key Specifications

Error Vector Magnitude (EVM)		
Wireless LAN error vector magnitude (EVM Performance (using Signal Studio signal noted)) half duplex port, RF output port		
802.11b 2.4GHz	<-28 dB typical (0 dBm to -30 dBm)	
802.11a 5.8 GHz	<-44 dB typical (-5 dBm to -15 dBm)	
802.11n 5.8 GHz 20MHz	<-43 dB typical (-5 dBm to -15 dBm)	
802.11n 5.8 GHz 40MHz	<-44 dB typical (-5 dBm to -15 dBm)	
802.11ac 5.57 GHz 80 MHz	<-42 dB typical (-5 dBm to -15 dBm)	

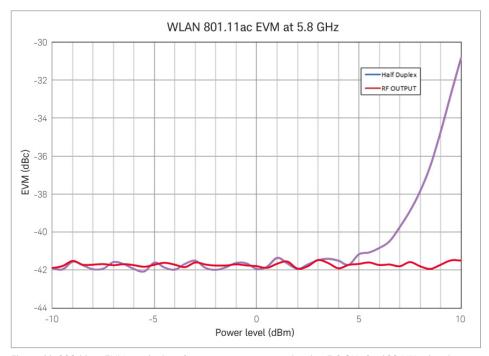


Figure 11. 802.11 ac EVM nominal performance versus power level at 5.8 GHz for 160 MHz signal bandwidth with equalization on the preamble

Software

Instrument connection software

Keysight I/O library

The I/O library suite offers a single entry point for connection to the most common instruments including AXIe, PXI, GPIB, USB, Ethernet/LAN, RS-232, and VXI test instruments from Keysight and other vendors. It automatically discovers interfaces, chassis, and instruments. The graphical user interface allows you to search for, verify, and update IVI instrument and soft front panel drivers for modular and traditional instruments. The IO suite safely installs in side-by-side mode with NI I/O software.

Free software download at www.keysight.com/find/iosuite

Module setup and usage

Keysight soft front panel

The VXT includes a soft front panel (SFP), a software-based graphical user interface (GUI) which enables the instrument's capabilities from your PC.

Included on CD-ROM shipped with module or online

Module management

Keysight connection expert

Connection expert is the graphical user interface included in the I/O libraries suite that allows you to search for, verify and update IVI instrument and soft front panel drivers for modular and traditional instruments

Free software download at www.keysight.com/find/iosuite

Programming

Driver IVI-COM IVI-C MATLAB Development environments

Visual Studio (VB .NET, C#, C/C++), VEE, LabVIEW, LabWindows/CVI, MATLAB

Included on CD-ROM shipped with module or online

Programming assistance

Command expert

Assists in finding the right instrument commands and setting correct parameters. A simple interface includes documentation, examples, syntax checking, command execution, and debug tools to build sequences for integration in Excel, MATLAB, Visual Studio, and VEE.

Free software download at www.keysight.com/find/commandexpert

Signal analysis software

X-Series measurement applications

Provides measurements for analog demodulation, noise figure, phase noise and others.

Licensed software. For more information, visit www.keysight.com/find/x-series_apps

Related Literature

Literature	Pub number
M9420A VXT PXIe Vector Transceiver - Product Fact Sheet	5992-1086EN
M9420A VXT PXIe Vector Transceiver - Configuration Guide	5992-1065EN
M9018A PXIe 18 slot Chassis - Data Sheet	5990-6583EN
M9037A PXIe High Performance Embedded Controller - Data Sheet	5991-3661EN
M9036A PXIe Embedded Controller - Data Sheet	5990-8465EN

Web

Product page: www.keysight.com/find/M9420A

X-Series measurement applications: www.keysight.com/find/X-Series_Apps

For more information or literature resources please visit the web:

www.keysight.com/find/vxt

From Hewlett-Packard through Agilent to Keysight

For more than 75 years, we've been helping you unlock measurement insights. Our unique combination of hardware, software and people can help you reach your next breakthrough. Unlocking measurement insights since 1939.

1939 THE FUTURE

myKeysight

myKeysight

www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.

www.axiestandard.org

AdvancedTCA® Extensions for Instrumentation and Test (AXIe) is an open standard that extends the AdvancedTCA for general purpose and semiconductor test. Keysight is a founding member of the AXIe consortium. ATCA®, AdvancedTCA®, and the ATCA logo are registered US trademarks of the PCI Industrial Computer Manufacturers Group.

PCI eXtensions for Instrumentation (PXI) modular instrumentation delivers a rugged, PC-based high-performance measurement and automation system.

Three-Year Warranty

www.keysight.com/find/ThreeYearWarranty

Keysight's commitment to superior product quality and lower total cost of ownership. The only test and measurement company with three-year warranty standard on all instruments, worldwide.

Keysight Infoline

Keysight Infoline

www.keysight.com/find/service

Keysight's insight to best in class information management. Free access to your Keysight equipment company reports and e-library.

cdma2000 is a US registered certification mark of the Telecommunications Industry

Bluetooth and the Bluetooth logos are trademarks owned by Bluetooth SIG, Inc., U.S.A. and licensed to Keysight Technologies, Inc.

www.keysight.com/find/m9420a

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	55 11 3351 7010
Mexico	001 800 254 2440
United States	(800) 829 4444

Asia Pacific

Australia China	1 800 629 485 800 810 0189
Hong Kong	800 938 693
India	1 800 11 2626
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 6375 8100

Europe & Middle East

Austria	0800 001122
Belgium	0800 58580
Finland	0800 523252
France	0805 980333
Germany	0800 6270999
Ireland	1800 832700
Israel	1 809 343051
Italy	800 599100
Luxembourg	+32 800 58580
Netherlands	0800 0233200
Russia	8800 5009286
Spain	800 000154
Sweden	0200 882255
Switzerland	0800 805353
	Opt. 1 (DE)
	Opt. 2 (FR)
	Opt. 3 (IT)

For other unlisted countries: www.keysight.com/find/contactus (BP-04-23-15)

0800 0260637

United Kingdom

